## A Guide to Evaluating State Bioscience Investments

February 26, 2018



## Background

- The Connecticut State Legislature, as part of Senate Bill 962, mandated the development of "evaluative metrics for bioscience development in the state."
- To address this requirement, Connecticut Innovations contracted with TEConomy to identify a framework to evaluate the relationship between the state's investments in bioscience initiatives and the economic outcomes resulting from such investments.

### • The framework considers:

- "Macro" level metrics that focus on outcomes associated with industry cluster evaluations or the ultimate outcomes expected from strategic bioscience interventions, programs, or investments at the state or regional level.
- "Micro" level evaluations that focus on returns on specific program- or company-level investments or state investments into specific individual institutions.

## Macro-Level: Innovation Ecosystem Perspective

# Evaluating a State's Bioscience Position from an Innovation Ecosystem Perspective



Source: TEConomy Partners, LLC

Key Evaluation Metrics for Life Sciences R&D Activity

| Ecosystem Component                                        | Key Concepts/Definitions                                                                                                                                                                                                                                                | Data Source                                                                 |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Industrial R&D                                             | <ul> <li>Mid-level industry detail available for:</li> <li>Medical equipment &amp; supplies</li> <li>Drug &amp; Pharmaceutical mfg.</li> </ul>                                                                                                                          | National Science Foundation<br>(NSF) Business R&D and<br>Innovation Survey. |  |
| Academic R&D                                               | <ul> <li>Life science-related fields/disciplines:</li> <li>Agricultural sciences</li> <li>Bioengineering</li> <li>Biological sciences</li> <li>Medical sciences</li> <li>Other life sciences</li> <li>In some cases, also include Psychology,<br/>Chemistry.</li> </ul> | NSF Higher Education<br>Research and Development<br>(HERD) Survey.          |  |
| Industry Support for<br>Academic R&D                       | Sources of funding, including industrial, are<br>published for each life sciences academic<br>field                                                                                                                                                                     | NSF Higher Education<br>Research and Development<br>Survey.                 |  |
| National Institutes of<br>Health (NIH) Research<br>Funding |                                                                                                                                                                                                                                                                         | NIH RePORTER<br>(Research Online Reporting<br>Tool)                         |  |

Key Evaluation Metrics for Technology Commercialization

| Ecosystem Component                                         | Key Concepts/Definitions                                                                                                                                                                                                                                                                                                                                                                                      | Data Source                                                                                                 |  |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Intellectual Property:<br>Patent Awards and<br>Applications | TEConomy has developed detailed definition of Bioscience-related patent classes.                                                                                                                                                                                                                                                                                                                              | Clarivate Analytics' Derwent<br>Innovation patent analysis<br>database<br>*Requires paid subscription       |  |
| University Technology<br>Transfer                           | <ul> <li>Not available for bioscience-specific technologies but useful gauge of overall performance/activities.</li> <li>Key measures include:         <ul> <li>Invention disclosures</li> <li>Start-ups</li> <li>Patent applications, Awards</li> <li>Licenses, options executed</li> <li>License income</li> </ul> </li> <li>Important to normalize data relative to total research expenditures</li> </ul> | Association of University<br>Technology Managers<br>(AUTM) survey<br>*Requires AUTM<br>membership to access |  |

Illustrative Example for Connecticut

#### Bioscience-related Patents Awarded to Connecticut Inventors, by Segment, 2012-15



Source: TEConomy/BIO Connecticut State Profile, 2016.

**Key Evaluation** Metrics for Bioscience Innovation Capital and the Overall Entrepreneurial and Business Climate

| Ecosystem<br>Component                                                                | Key Concepts/Definitions                                                                                                                                                                                                                                                                                                                                                                                                  | Data Source                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Venture Capital (VC)<br>Investments                                                   | <ul> <li>TEConomy has developed detailed<br/>definition of Bioscience-related VC<br/>segments (see Figure 7)</li> <li>Important to track both deal flow volume<br/>(companies and deals); dollars invested</li> </ul>                                                                                                                                                                                                     | Thomson Reuters Thomson<br>ONE database;<br>PitchBook.<br>*Both require paid subscriptions                                                                                                                                                                                                 |
| Federal SBIR/STTR<br>Awards                                                           | <ul> <li>To isolate bioscience-related fields focus<br/>on awards from Dept. of Health and<br/>Human Services         <ul> <li>Other Departments for searching<br/>for bioscience-related awards<br/>include Dept. of Agriculture;<br/>National Science Foundation;<br/>Dept. of Defense</li> </ul> </li> <li>Important to track both award numbers and<br/>funding levels by award Phase.</li> </ul>                     | SBIR database at sbir.gov                                                                                                                                                                                                                                                                  |
| Ancillary related<br>assessments:<br>Entrepreneurial<br>Ecosystem<br>Business Climate | <ul> <li>Sampling of broad measures for consideration:</li> <li>Presence of high-growth companies (Inc. 5000)</li> <li>Entrepreneurial activity (Kauffman Foundation's Startup Activity Index)</li> <li>New Firm Start-up rate (Census)</li> <li>Tax Climate (State Business Tax Climate Index)</li> <li>R&amp;D Facility Tax Burden (Tax Foundation)</li> <li>Business Climate Ratings (Forbes, CNBC, others)</li> </ul> | Inc. 5000<br>The Kauffman Index of Startup<br>Activity<br>Tax Foundation<br>R&D Facility Tax Burden:<br>"Location Matters: The State Tax<br>Costs of Doing Business." Tax<br>Foundation, 2015.<br>Forbes: Forbes Best States for<br>Business<br>CNBC: America's Top States for<br>Business |

## Illustrative Example: Arizona

#### Examples of How Arizona Tracks Bioscience VC Investments

#### AZ & U.S. Bio Venture Capital: 2002-15



#### AZ & U.S. Bio Share of Venture Capital, 2002-15\*

| Metric                                              |        | ARIZONA  |                                |                                   | U.S.      |           |                                  |
|-----------------------------------------------------|--------|----------|--------------------------------|-----------------------------------|-----------|-----------|----------------------------------|
|                                                     | Bio VC | Total VC | Bio Share<br>of Total<br>AZ VC | AZ Bio<br>Share of<br>U.S. Bio VC | Bio VC    | Total VC  | Bio Share<br>of Total<br>U.S. VC |
| Number of<br>Deals                                  | 126    | 479      | 26%                            | 0.71%                             | 17,833    | 67,147    | 27%                              |
| Number of<br>Individual<br>Companies<br>Invested in | 40     | 168      | 24%                            | 0.78%                             | 5,104     | 23,613    | 22%                              |
| Investment (in<br>\$ Millions)                      | \$716  | \$3,687  | 19%                            | 0.50%                             | \$142,964 | \$567,345 | 25%                              |

#### AZ & U.S. Venture Capital by Stage



#### Share of VC Investments by Bio-Related Industry



Source: Thomson Reuters Thomson One Database with TEConomy Partners, LLC Calculations.

Key Evaluation Metrics for Bioscience Industry Positioning and Performance

| Ecosystem<br>Component                                             | Key Concepts/Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Data Source                                                                                                                                                                                                                                                                               |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bioscience Industry<br>Employment,<br>Establishments, and<br>Wages | <ul> <li>Key employment measures, by subsector, include:</li> <li>Size – numbers of industry jobs.</li> <li>Relative Concentration – industry location quotients represent the bioscience industry share of total state employment relative to that same share nationally, e.g. a LQ of 1.0 means state has same concentration seen nationally; an LQ≥1.2 said to be "Specialized" concentration of 20% or more.</li> <li>Trends – both long- and near-term trends important to assess performance and evaluate key state investments.</li> <li>State rankings or quintiles – used to assess relative performance, positioning.</li> </ul> | U.S. Bureau of Labor Statistics<br>(BLS), Quarterly Census of<br>Employment and Wages<br>(QCEW)<br>"Enhanced" version of BLS,<br>QCEW data from IMPLAN to fill<br>in estimates for data cells that<br>are suppressed due to<br>confidentiality.<br>*IMPLAN data set requires<br>purchase. |  |
| Bioscience Workforce                                               | <ul> <li>In addition to broad industry assessment,<br/>expertise in innovation-driving, life<br/>science-specific occupations can be<br/>measured in a similar manner based on<br/>employment size, concentration (LQ),<br/>and trends.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                         | U.S. Bureau of Labor Statistics,<br>Occupational Employment<br>Statistics (OES) program and<br>State Labor Market Information<br>offices                                                                                                                                                  |  |
| Bioscience Talent<br>Generation                                    | • Can measure talent pipeline and degree production in bioscience-related fields from state colleges and universities to gauge "supply" of talent and identify key academic programs or gaps.                                                                                                                                                                                                                                                                                                                                                                                                                                              | U.S. Department of Education,<br>National Center for Education<br>Statistics (NCES), Integrated<br>Postsecondary Education Data<br>System (IPEDS) database                                                                                                                                |  |

## Illustrative Example: North Carolina

#### NC Life Science Industry: Employment Size, Concentration, and Change, 2012-14



Source: TEConomy Partners, LLC analysis of BLS, QCEW data; enhanced file from IMPLAN.

### A State's National Position/Ranking

#### Summary of Connecticut's Performance in Bioscience-related Metrics

| Metric                                                        | Connecticut | United States | Quintile |
|---------------------------------------------------------------|-------------|---------------|----------|
| Bioscience Industry, 2014                                     |             |               |          |
| Bioscience Industry Employment                                | 23,338      | 1,655,680     |          |
| Bioscience Industry Location Quotient                         | 1.15        | n/a           | •        |
| Bioscience Industry Establishments                            | 853         | 77,283        |          |
| Academic Bioscience R&D Expenditures, FY 2014                 |             |               |          |
| Bioscience R&D (\$ thousands)                                 | \$802,460   | \$38,873,926  | 0        |
| Bioscience Share of Total R&D                                 | 78%         | 61%           | 0        |
| Bioscience R&D Per Capita                                     | \$223       | \$122         | 0        |
| NIH Funding, FY 2015                                          |             |               |          |
| Funding (\$ thousands)                                        | \$461,254   | \$22,869,746  | 0        |
| Funding Per Capita                                            | \$128       | \$71          | 0        |
| Bioscience Venture Capital Investments, 2012–15 (\$ millions) | \$980.0     | \$48,742.10   | Ū        |
| Bioscience and Related Patents, 2012–15                       | 3,524       | 101,026       | Ō        |

State ranking figures for bioscience performance metrics are calculated as quintiles, where:

top quintile – 🕕 🕕 💷 🗤 🗤 – bott

bottom quintile

Source: TEConomy/BIO Connecticut State Profile, 2016.

Macro-Level: Translational Research Perspective

### Evaluating a State's Bioscience Position from a Translational Research Perspective



**Key Evaluation** Metrics for Bioscience Translational **Research Activity** and Performance via Industry-Academic Collaboration

| Ecosystem<br>Component                                                            | Key Concepts/Definitions                                                                                                                                                                                                                                                                        | Data Source                                                                                                                                                                       |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Industry-Sponsored<br>University Biosciences<br>Research                          | • Using the life sciences disciplines detailed previously, can track the dollars and share of University R&D expenditures that are funded by industry to assess levels/trends in partnerships, collaborations.                                                                                  | NSF Higher Education Research<br>and Development Survey.                                                                                                                          |  |
| Industry-Academic<br>Research Publications                                        | <ul> <li>Identifying industry and university co-<br/>authors of scientific papers in the life<br/>sciences from state universities to assess<br/>levels/trends in partnerships/<br/>collaborations.</li> </ul>                                                                                  | Web of Science publications<br>database; includes published<br>research articles, proceedings<br>papers, and reviews.<br>*Requires paid subscription                              |  |
| Industry-Assigned<br>Biomedical Patents with<br>Citations to Academic<br>Journals | • Examining industry patents in biomedical technology classes to identify which cite academic research as foundational to the innovation.                                                                                                                                                       | Clarivate Analytics' Derwent<br>Innovation patent analysis<br>database<br>*Requires paid subscription                                                                             |  |
| Industry-Funded Clinical<br>Trials with a University<br>Sponsor/Collaborator      | <ul> <li>Federal clinical trials database identifies<br/>industry-funded trials where a university is<br/>also sponsoring or collaborating.</li> <li>At a state level can identify state-based<br/>universities or academic medical centers<br/>acting as sponsors or collaborators.</li> </ul> | NIH's National Library of<br>Medicine maintains a database<br>at ClinicalTrials.gov. Includes<br>privately and publicly funded<br>clinical studies conducted around<br>the world. |  |

Micro-Level: Direct, Proximate Measures of Success

- In order to help determine if specific investments should continue to be made in a particular program or initiative, it is necessary to track proximate measures of success in order to improve the quality of decision making by analyzing measures that predict the likelihood of a technology receiving additional financial investment.
- The proximate, or near-term, measures of success will vary depending on where within the life cycle an investment is being made.
  - Too often, "jobs created" is used when the creation of jobs will not occur for many years.
  - This results in either the loss of funds when job numbers are not met quickly (which is not realistic) or mediocre programs receiving funding for years under the promise of future jobs when in reality proximate measures indicate the project will not be successful. Both outcomes are equally undesirable.

Potential Proximate Measures of Success

- Research & Development
  - Cost-share received
  - · Follow-on investment received
- Commercialization & Deployment
  - # of patent applications submitted and issued
  - # of technologies licensed and revenue generated
- Entrepreneurial Growth
  - Number of companies and jobs created
  - Income generated from sales
  - Equity investment
  - SBIR/STTR/Federal Research Grant Activity
- Business Development/Scalability
  - Number of Companies involved in project/initiative
    - Increase in product sales/sales revenue from new product development
    - Increase in R&D investment
    - Jobs Created/Total Jobs supported
    - Annual Aggregate Client Payroll/Average Salary per Job
    - Number of companies attracted to state as a result of initiative

Micro-Level: Input/Output Economic Impact Modeling

- A state's investments in significant bioscience projects/centers/ laboratories have direct operational economic impact.
- In addition, many of these expenditures are then recirculated as recipients of the first round of income re-spend a portion of this income with other businesses and individuals "multiplier effect".
- The standard analytical technique for the quantification of expenditure impacts is input/output (I/O) analysis. The I/O methodology calculates the expenditure impacts of a specific bioscience investment across multiple measures, including:
  - Economic Output is the total value of goods and services produced in an economy and represents "economic impact".
  - **Income** is the total amount of income received by labor in the economy because of the presence and operations of the investment.
  - **Employment** includes jobs within the economy as a result of the investment.
- These impacts consist of three types:
  - Direct effects (the specific impact of the investment in question),
  - Indirect effects (the impact on suppliers), and
  - **Induced effects** (the additional economic impact of the spending of these suppliers and employees in the overall economy).

## Illustrative Example: North Carolina

The Economic Contribution to the North Carolina Economy of the 102 Currently Active Companies that Received NCBiotech Business Loans

|                    | Output (Mil. \$s)    | Labor Income (Mil.<br>\$s) | Employment       | State/Local Tax<br>Revenue (Mil. \$s) |
|--------------------|----------------------|----------------------------|------------------|---------------------------------------|
| Total Life Science | Industry Impact      |                            |                  |                                       |
| Direct Effect      | \$55,324             | \$6,654.8                  | 62,937           | \$700.9                               |
| Indirect Impacts   | \$19,278             | \$7,295.7                  | 108,590          | \$891.7                               |
| Induced Impacts    | \$11,761             | \$3,758.4                  | 88,437           | \$582.0                               |
| Total Impact       | \$86,364             | \$17,708.9                 | 259,963          | \$2,174.6                             |
|                    |                      |                            |                  |                                       |
| Impact of the 102  | Currently Active Con | npanies that Received      | Business Develop | oment Loans                           |
| Direct Effect      | \$2,760              | \$331.6                    | 2,914            | \$34.2                                |
| Indirect Impacts   | \$957                | \$366.7                    | 5,307            | \$51.9                                |
| Induced Impacts    | \$591                | \$188.9                    | 4,444            | \$29.8                                |
| Total Impact       | \$4,308              | \$887.2                    | 12,666           | \$115.9                               |
| Share of Total Inc | dustry Impact        |                            |                  |                                       |
| Direct Effect      | 5.0%                 | 5.0%                       | 4.6%             | 4.9%                                  |
| Indirect Impacts   | 5.0%                 | 5.0%                       | 4.9%             | 5.8%                                  |
| Induced Impacts    | 5.0%                 | 5.0%                       | 5.0%             | 5.1%                                  |
| Total Impact       | 5.0%                 | 5.0%                       | 4.9%             | 5.3%                                  |

Source: TEConomy Partners, LLC analysis of NCBiotech data using IMPLAN Input/Output model for North Carolina.

### Conclusion

- The State of Connecticut has made significant investments over time to grow its bioscience industrial base. It is important to understand how these taxpayer-funded initiatives are impacting the state's economy and its citizens.
- It is recommended that an independent, third-party entity with the requisite expertise be engaged to gather the relevant data from the various parties to ensure a thorough analysis as outlined in this bioscience evaluation framework, and communicate its findings in a clear, concise, and meaningful manner to key stakeholders throughout Connecticut.
- It is important to note, the macro level data is available from public or publicly-accessible subscription data sources; however, the micro level data can only be obtained with the cooperation/participation of the programmatic initiatives, and even then, only if the information/metrics have been tracked in a high-quality manner over time.

### Thank You!

### **Deborah Cummings**

Principal & Senior Director TEConomy Partners, LLC Phone: 614.395.3725 cummingsd@teconomypartners.com



#### Innovating Tomorrow's Economic Landscape

TEConomy Partners is a global leader in research, analysis and strategy for innovation-based economic development. Today we're helping nations, states, regions, universities, and industries blueprint their future and translate knowledge into prosperity.